Les Critiques d’une ère gracieuse et ses analyses inconsidérées
- Nouveau
Nous étudions l'algèbre de Hopf H associée à l'opérade pré-Lie.
L'espace des éléments primitifs du dual gradué est munie d'une structure pré-Lie à gauche définie par l'insertion d'un arbre dans un autre.
Nous retrouvons une relation de dérivation entre le produit pré-Lie d'insertion et le produit pré-Lie de greffe sur les éléments primitifs du dual gradué de l'algèbre de Hopf de Connes-Kreimer.
Nous mettons en évidence un coproduit sur le produit tensoriel de l'algèbre de Hopf de Claque, Ebrahimi-Fard et Manchon avec l'algèbre de Hopf de Connes-Kreimer, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l'algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées.
Nous montrons que l'espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d'insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments.
Finalement, on introduit les opérades à début constant et on montre que l'opérade pré-Lie s'obtient comme déformation de l'opérade NAP.
Né le 01 novembre 1982 à Hajeb El Ayoun- kairouan (Tunisie), Abdellatif Saïdi est titulaire d'une doctorat en Mathématiques spécialité Algèbre non commutative, Actuellement, il est enseignant chercheur à la Faculté des Sciences de Monastir.
Fiche technique